Когда станет возможна беспроводная передача электричества

Схема для самостоятельной сборки

В данной схеме минимум элементов, что нисколько не облегчает нашу задачу. Ведь чтобы она работала необходимо её не только собрать, но и настроить. Начнем с МОТов.

Такой трансформатор есть в микроволновке. Представляет собой обычный силовой трансформатор с одной лишь разницей, что его сердечник работает в режиме, близком к насыщению.

Схема сборки самодельного трансформатора Тесла.

Это означает, что несмотря на малые размеры, он имеет мощность до 1,5 кВт. Однако, есть и отрицательные стороны у такого режима работы. Это и большой ток холостого хода, около 2-4 А, и сильный нагрев даже без нагрузки, про нагрев с нагрузкой я молчу. Обычное выходное напряжение у МОТа — 2000-2200 вольт при силе тока 500-850 мА.

МОТы на трансформатор теслу.

У всех МОТов «первичка» намотана внизу, «вторичка» сверху. Делается это для хорошей изоляции обмоток.

На «вторичке», а иногда и на «первичке» намотана накальная обмотка магнетрона, около 3,6 вольт.

Причём между обмотками можно заметить две металлические перемычки. Это — магнитные шунты.

Основное их назначение — замкнуть на себя часть создаваемого «первичкой» магнитного потока.

Таким образом ограничить магнитный поток через «вторичку» и её выходной ток на некотором уровне.

Внимание! Дилетантов просим отказаться от этой работы! Опасно, высокое напряжение, смертельно для жизни! Напряжение хотя и мало по сравнению со строчником, но сила тока, в сто раз большая, чем безопасный предел 10мА сведет шансы остаться в живых практически к нулю. КАПы подразумеваются высоковольтные керамические конденсаторы (серий К15У1, К15У2, ТГК, КТК, К15-11, К15-14 —для установок высокой частоты!)

КАПы подразумеваются высоковольтные керамические конденсаторы (серий К15У1, К15У2, ТГК, КТК, К15-11, К15-14 —для установок высокой частоты!).

Фильтр от ВЧ для самодельной теслы.

Фильтр от ВЧ: соответственно две катушки, выпоняющие функцию фильтров от напряжения высокой частоты.

В каждой 140 витков медного лакированного провода 0.5 мм в диаметре.

Искровик, который нужен для коммутации питания и возбуждения колебаний в контуре.

Если в схеме не будет искровика, то питание будет, а колебаний нет. А еще блок питания начинает сифонить через первичку — а это короткое замыкание!

Искровик для самодельного трансформатора Тесла.

Пока искровик не замкнут — капы заряжаются. Как только замыкается — начинаются колебания. Поэтому ставят балласт в виде дроселей — когда искровик замкнут дросель мешает течь току от блока питания заряжается сам, а потом, когда разрядник разомкнется, заряжает капы с удвоенной злостью.

Наконец-то очередь дошла и до самого трансформатора Теслы: первичная обмотка состоит из 7-9 витков провода очень большого сечения.

Впрочем, подойдёт сантехническая медная трубка. Вторичная обмотка содержит от 400 до 800 витков, тут нужно подстраиваться.

Готовая катушка трансформатора Тесла своими руками.

На первичную обмотку подаётся питание. У вторички один вывод надёжно заземлён, второй присоединён к ТОРУ (излучатель молний) .

Тор можно изготовить из вентиляционной гофры. На этом все. Помните о безопасности и желаем удачи в самостоятельной сборке.

Беспроводной путь

Большинство современных жилых домов и коммерческих зданий питаются от сетей переменного тока. Электростанции генерируют электричество переменного тока, которое доставляется в дома и офисы с помощью высоковольтных линий электропередачи и понижающих трансформаторов.

Электричество поступает в распределительный щит, а затем электропроводка доставляет электричество к оборудованию и устройствам, которые мы используем каждый день: светильники, кухонная техника, зарядные устройства и так далее.

Все компоненты стандартизованы. Любое устройство, рассчитанное на стандартные ток и напряжение, будет работать от любой розетки по всей стране. Хотя стандарты разных стран и различаются между собой, в конкретной электрической системе любое устройство будет работать при условии соблюдения стандартов данной системы.

Тут кабель, там кабель… Большинство наших электрических устройств обладает кабелем питания от сети переменного тока.

Самостоятельное изготовление

Итак, самый простой способ сделать катушку Тесла для чайников своими руками. Часто в Интернете можно встретить цифры, превышающие стоимость хорошего смартфона, но на самом деле из кучи мусора в гараже можно собрать трансформатор на 12В, который позволит весело провести время, включив лампу без использования розетки.

требуется эмалированный медный провод. Если вы не можете найти лак для ногтей, вам также понадобится обычный лак для ногтей. Диаметр проволоки может варьироваться от 0,1 до 0,3 мм. Для поддержания количества оборотов требуется около 200 метров. Его можно намотать на обычную ПВХ трубу диаметром от 4 до 7 см. Высота от 15 до 30 см. Также потребуется приобрести транзистор, например, D13007, пару резисторов и проводов. Было бы неплохо иметь компьютерный кулер, охлаждающий транзистор.

Теперь можно приступить к сборке:

  1. отрезать 30 см трубы;
  2. оберните его нитью. Изгибы должны быть максимально плотно прилегающими друг к другу. Если проволока не покрыта эмалью, обработайте лаком. Сверху трубы проденьте конец проволоки через стену и приподнимите так, чтобы он выступал на 2 см выше установленной трубы.;
  3. сделать платформу. Подойдет обычная плита ДСП;
  4. можно сделать первую катушку. Нужно взять медную трубку диаметром 6 мм, согнуть ее на три с половиной оборота и закрепить на каркасе. Если диаметр трубы меньше, витков должно быть больше. Его диаметр должен быть на 3 см больше, чем у второй катушки. Прикрепите к каркасу. Сразу закрепляем вторую катушку;
  5. есть несколько способов создать тор. Можно использовать медные трубы. Но проще взять обычную алюминиевую гофру и металлическую перекладину для крепления к выступающему концу провода. Если проволока слишком хрупкая, чтобы удерживать тороид, можно использовать гвоздь, как на изображении ниже;
  6. не забудьте защитное кольцо. Однако, если один конец первичной цепи заземлен, от него можно отказаться;
  7. когда конструкция готова, транзистор подключается по схеме, подключается к радиатору или кулеру, затем необходимо подать питание, и установка завершена.

В качестве блока питания для установки многие используют обычную коронку Durasel.

Источники

  • https://lightika.com/raznoe/besprovodnaya-peredacha-energii.html
  • https://amperof.ru/teoriya/besprovodnaya-peredacha-elektroenergii.html
  • https://uk-parkovaya.ru/secrets/wires/3-sposoba-besprovodnoj-peredaci-energii-tesla-kak-vsegda-byl-prav-lazery-mikrovolny-i-katuski-induktivnosti.html
  • https://domikelectrica.ru/3-sposoba-peredachi-energii-bez-provodov/
  • https://www.asutpp.ru/besprovodnaya-peredacha-elektrichestva.html
  • https://geekometr.ru/statji/besprovodnoj-sposob-peredachi-elektroenergii.html
  • https://mentamore.com/covremennye-texnologii/besprovodnoe-elektrichestvo.html
  • [https://radioprog.ru/post/152]

Маршрут транспортировки электричества

Итак, как мы уже сказали, начальной точкой является электрическая станция, которая, собственно, и генерирует электроэнергию. На сегодняшний день основными видами электростанций являются гидро- (ГЭС), тепло- (ТЭС) и атомные (АЭС). Помимо этого бывают солнечные, ветровые и геотермальные эл. станции.

Далее от источника электричество передается к потребителям, которые могут находиться на дальних расстояниях. Чтобы осуществить передачу электроэнергии, нужно повысить напряжение с помощью повышающих трансформаторов (напряжение могут повысить вплоть до 1150 кВ, в зависимости от расстояния).

Почему электроэнергия передается при повышенном напряжении? Все очень просто. Вспомним формулу электрической мощности — P=UI, тогда если передавать энергию к потребителю, то чем выше напряжение на линии электропередач — тем меньше ток в проводах, при той же потребляемой мощности. Благодаря этому можно строить ЛЭП с большим напряжением, уменьшив сечение проводов, по сравнению с ЛЭП с низшим напряжением. Значит и сократятся расходы на строительство — чем тоньше провода, тем они дешевле.

Соответственно от станции электричество передается на повышающий трансформатор (при необходимости), а после этого с помощью ЛЭП осуществляется передача электроэнергии на ЦРП (центрально распределительные подстанции). Последние, в свою очередь, находятся в городах или в близком расстоянии от них. На ЦРП происходит понижение напряжения до 220 или же 110 кВ, откуда электроэнергия передается к подстанциям.

Далее напряжение еще раз понижают (уже до 6-10 кВ) и происходит распределение электрической энергии по трансформаторным пунктам, именуемым также ТП. К трансформаторным пунктам электричество может передаваться не по ЛЭП, а подземной кабельной линией, т.к. в городских условиях это будет более целесообразно. Дело в том, что стоимость полосы отчуждения в городах достаточно высокая и более выгодно будет прокопать траншею и заложить кабель в ней, нежели занимать место на поверхности.

От трансформаторных пунктов электроэнергия передается к многоэтажным домам, постройкам частного сектора, гаражному кооперативу и т.д

Обращаем ваше внимание на то, что на ТП напряжение еще раз понижается, уже до привычных нам 0,4 кВ (сеть 380 вольт)

Если кратко рассмотреть маршрут передачи электроэнергии от источника к потребителям, то он выглядит следующим образом: электростанция (к примеру, 10 кВ) – повышающая трансформаторная подстанция (от 110 до 1150 кв) – ЛЭП – понижающая трансформаторная подстанция – ТП (10-0,4 кВ) – жилые дома.

Советуем изучить Дезинфекционное освещение для обеззараживания и лечения заболеваний

Вот таким способом электричество передается по проводам в наш дом. Как вы видите, схема передачи и распределения электроэнергии к потребителям не слишком сложная, все зависит от того, насколько большое расстояние.

Наглядно увидеть, как электрическая энергия поступает в города и доходит до жилого сектора, вы можете на картинке ниже:

Более подробно об этом вопросе рассказывают эксперты:

Как электричество поступает от источника к потребителю

Физические основы явления электромагнитной индукции

Электромагнитная индукция — явление возникновения электрического тока, электрического поля или электрической поляризации при изменении во времени магнитного поля или при движении материальной среды в магнитном поле. Фарадеем была сформулирована основная причина появления тока в замкнутом контуре. В замкнутом проводящем контуре ток возникает при изменении числа линий магнитной индукции, которые пронизывают этот контур.

Чем больше будет это изменение, тем сильнее получится индукционный ток

Неважно, каким образом мы добьемся изменения числа линий магнитной индукции. Например, это можно сделать движением контура в неоднородном магнитном поле, как это происходило в опыте с магнитом или движением катушки. А можем, например, изменять силу тока в соседней с контуром катушке, при этом будет изменяться магнитное поле, создаваемое этой катушкой

А можем, например, изменять силу тока в соседней с контуром катушке, при этом будет изменяться магнитное поле, создаваемое этой катушкой.

Индукционный ток в катушке из металлической проволоки возникает при введении магнита внутрь катушки и при его выведения из катушки, а также при изменении силы тока во второй катушке, магнитное поле которой пронизывает первую катушку

Появление электрического тока в замкнутом контуре при изменениях магнитного поля, пронизывающего контур, свидетельствует о действии в контуре сторонних сил неэлектростатической природы или о возникновении электродвижущей силы индукции. ЭДС — скалярная физическая величина, характеризующая работу сторонних сил. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура.

Единица магнитного потока в Международной системе единиц называется вебером (Вб). Она определяется на основании использования закона электромагнитной индукции. Магнитный поток через площадь, ограниченную замкнутым контуром, равен 1 Вб, если при равномерном убывании этого потока до нуля за 1 секунду в контуре возникает ЭДС индукции 1 В.

Возможные проблемы, которые необходимо учитывать при разработке резонансного преобразователя

На практике, если вы остановили свой выбор на предлагаемой топологии схемы, основа которой, несомненно, удобный для использования генератор Ройера, вам обязательно необходимо рассмотреть два момента, связанных с тем, чтобы исключить защелкивание МОП-транзисторов.

  1. Требования кисточнику питания передатчика в момент включения системы беспроводной передачи мощности

Если источник питания не в состоянии обеспечить достаточный пусковой ток во время переходного процесса при включении, произойдет просадка напряжения и может случиться так, что один из двух МОП-транзисторов начнет зависать в режиме линейного усиления, а через напряжение питания постоянно закорачиваться на «землю», что способно привести к перегреву МОП-транзистора и, как следствие, к его выходу из строя

Следует также обратить внимание на то, чтобы конденсатор входного фильтра не имел чрезмерного номинала, поскольку это может еще больше усугубить эффект «защелкивания», ведь блок питания, кроме пускового тока для генератора, должен будет зарядить и этот конденсатор

На практике подобного негативного эффекта удается избежать, подключив конденсаторы и резонансный контур к рабочему напряжению еще до остальной части схемы. Затем затворы МОП-транзисторов можно переключать с помощью оптопар или транзисторов. Затворами также управляют и через отдельный источник питающего напряжения, например уже упомянутый модуль серии MagI3C, его включение от основного источника питания выполняется с некоторой задержкой.

  1. Импеданс, отраженный отстороны приемника к передатчику

С учетом больших скачков нагрузки на стороне приемника и вполне реальных внезапных изменений коэффициентов связи катушек может случиться так, что частично отраженный импеданс накоротко замыкает индуктивность намагничивания со стороны передатчика. Это, в свою очередь, приводит к срыву колебаний, а схема «защелкивается».

Коэффициент связи можно определить как:

где Usec — напряжение на вторичной обмотке; Upri — напряжение на первичной обмотке; Npri — число витков первичной обмотки; Nsec — число витков вторичной обмотки; Lpri — индуктивность первичной обмотки; Lsec — индуктивность вторичной обмотки.

M — коэффициент взаимоиндукции определяется как:

Для противодействия этому негативному эффекту полезно слегка отстроить частоту резонансного контура приемника при помощи подключения дополнительного параллельного конденсатора так, чтобы резонансная частота самого контура приемника была на 10–20% выше частоты контура передатчика. Альтернативно, параллельно катушке передатчика, может быть подсоединена дополнительная индуктивность (дроссель), причем так, чтобы не возникло магнитной связи с каналом передачи энергии. Эта параллельная индуктивность должна быть равна или меньше индуктивности намагничивания катушки передатчика. Дроссель сохраняет энергию во время ZVS-процесса и помогает поддерживать колебания в случае неблагоприятных переходных процессов, связанных с изменением нагрузки.

Отраженный импеданс с параллельной компенсацией:

где f — частота; Rload — сопротивление нагрузки.

Резонансный конденсаторный приемник:

Дополнительная компенсирующая емкость приемника:

На первом этапе, еще при создании прототипа, важно насколько это возможно проверить все ситуации, связанные с изменением нагрузки, что критично для обеспечения надежной конструкции с надлежащей функциональностью

Микроволны

Неужели нет другого реально работающего способа передать электричество без проводов. Есть, и его изобрели еще до попыток и детских игр в звездные войны.

Оказывается, что специальные микроволны с длиной в 12см (частота 2,45Ггц), являются как бы прозрачными для атмосферы и она им не мешает в распространении.

Какой бы ни была плохой погода, при передаче с помощью микроволн, вы потеряете всего пять процентов! Но для этого вы сначала должны преобразовать электрический ток в микроволны, затем их поймать и опять вернуть в первоначальное состояние.

Первую проблему ученые решили очень давно. Они изобрели для этого специальное устройство и назвали его магнетрон.

Причем это было сделано настолько профессионально и безопасно, что сегодня каждый из вас у себя дома имеет такой аппарат

Зайдите на кухню и обратите внимание на свою микроволновку

У нее внутри стоит тот самый магнетрон с КПД равным 95%.

Но вот как сделать обратное преобразование? И тут было выработано два подхода:

Американский

Советский


В США еще в шестидесятых годах ученый У.Браун придумал антенну, которая и выполняла требуемую задачу. То есть преобразовывала падающее на него излучение, обратно в электрический ток.

Он даже дал ей свое название — ректенна.

После изобретения последовали опыты. И в 1975г при помощи ректенны, было передано и принято целых 30 квт мощности на расстоянии более одного километра. Потери при передаче составили всего 18%.

Спустя почти полвека, этот опыт до сих так никто и не смог превзойти. Казалось бы метод найден, так почему же эти ректенны не запустили в массы?

И тут опять всплывают недостатки. Ректенны были собраны на основе миниатюрных полупроводников. Нормальная работа для них — это передача всего нескольких ватт мощности.

А если вы захотите передать десятки или сотни квт, то готовьтесь собирать гигантские панели.

И вот тут как раз таки появляются не разрешимые сложности. Во-первых, это переизлучение.

Мало того, что вы потеряете из-за него часть энергии, так еще и приблизиться к панелям без потери своего здоровья не сможете.

Вторая головная боль — нестабильность полупроводников в панелях. Достаточно из-за малой перегрузки перегореть одному, и остальные выходят из строя лавинообразно, подобно спичкам.

В СССР все было несколько иначе. Не зря наши военные были уверены, что даже при ядерном взрыве, вся зарубежная техника сразу выйдет из строя, а советская нет. Весь секрет тут в лампах.

В МГУ два наших ученых В.Савин и В.Ванке, сконструировали так называемый циклотронный преобразователь энергии. Он имеет приличные размеры, так как собран на основе ламповой технологии.

Внешне это что-то вроде трубки длиной 40см и диаметром 15см. КПД у этого лампового агрегата чуть меньше, чем у американской полупроводниковой штуки — до 85%.

Но в отличие от полупроводниковых детекторов, циклотронный преобразователь энергии имеет ряд существенных достоинств:

надежность

большая мощность

стойкость к перегрузкам

отсутствие переизлучения

невысокая цена изготовления

Однако несмотря на все вышесказанное, во всем мире передовым считаются именно полупроводниковые методы реализации проектов. Здесь тоже присутствует свой элемент моды.

После первого появления полупроводников, все резко начали отказываться от ламповых технологий. Но практические испытания говорят о том, что это зачастую неправильный подход.

Конечно, ламповые сотовые телефоны по 20кг или компьютеры, занимающие целые комнаты никому не интересны.

Но иногда только проверенные старые методы, могут нас выручить в безвыходных ситуациях.

В итоге на сегодняшний день, мы имеем три возможности передать энергию без проводов. Самый первый из рассмотренных ограничен как расстоянием, так и мощностью.

Но этого вполне хватит, чтобы зарядить батарейку смартфона, планшета или чего-то побольше. КПД хоть и маленький, но метод все же рабочий.

Способ с лазерами хорош только в космосе. На поверхности земли это не очень эффективно. Правда когда другого выхода нет, можно воспользоваться и им.

Зато микроволны дают полет для фантазий. С их помощью можно передавать энергию:

на земле и в космосе

с поверхности земли на космический корабль или спутник

и наоборот, со спутника в космосе обратно на землю

Что это такое?

Катушка представляет собой трансформатор. Назначение устройства — увеличение параметров тока до огромных высот (до миллионов вольт). Основная цель: максимально увеличить частоту переменного тока. В идеале такая же обратная катушка должна быть размещена в точке приема энергии, которая будет резонировать с устройством, что позволит передавать энергию на расстояние.


Бесконтактная передача энергии через катушку Тесла

Давайте подробно рассмотрим, как работает катушка Тесла. Для начала качаемся — не сразу понятно, что качается в катушке. Постоянный ток, который Эдисон использовал в своих изобретениях, дорог в производстве. Эта энергия имеет ярко выраженный вектор движения. Переменный ток постоянно меняет параметры электричества: напряжение и ток. Это называется колебаниями электрического тока.

интересно, что основные законы колебания электрического тока и механического маятника совпадают. Примечательно, что существует также резонансный эффект для электричества. Когда частоты двух электрических полей совпадают, амплитуда колебаний увеличивается. По задумке Теслы, после того, как катушки резонируют, в приемнике должен появиться электрический ток.

На самом деле приемник так и не был изобретен. Катушка Тес используется в качестве ориентира, на ней вы можете увидеть поток: другими словами, электрическую дугу, текущий разряд, искусственную молнию и изучить беспроводную передачу электричества.

Технология

Принцип индуктивной связи

Два устройства, взаимно индуктивно-связанные или имеющие магнитную связь, выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода, производится посредством электромагнитной индукции. Это связано с взаимной индуктивностью. Индуктивная связь является предпочтительной из-за её способности работать без проводов, а также устойчивости к ударам.

Резонансная индуктивная связь является сочетанием индуктивной связи и резонанса. Используя понятие резонанса можно заставить два объекта работать зависимо от сигналов друг друга.

Концепция резонанса индуктивной связи

Как видно из схемы выше, резонанс обеспечивает индуктивность катушки. Конденсатор подключен параллельно к обмотке. Энергия будет перемещаться назад и вперед между магнитным полем, окружающим катушку и электрическим полем вокруг конденсатора. Здесь потери на излучение будет минимальными.

Существует также концепция беспроводной ионизированной связи.

Она тоже воплотима в жизнь, но здесь необходимо приложить немного больше усилий. Эта техника уже существует в природе, но вряд ли есть целесообразность ее реализации, поскольку она нуждается в высоком магнитном поле, от 2,11 М /м . Её разработал гениальный ученый Ричард Волрас, разработчик вихревого генератора, который посылает и передает энергию тепла на огромные расстояния, в частности при помощи специальных коллекторов. Самой простой пример такой связи – это молния.

Смотреть похожие работы

Сведения об издании

Наименование издания: «Наука и образование ON-LINE»Сетевое издание (сайт) зарегистрировано Роскомнадзором, свидетельство ЭЛ № ФС 77 — 70153 от 30.06.2017 (предыдущее Эл№ФC77-49690 от 26 апреля 2012). Возрастная категория сайта 6+ Корман М.О. — Ответственный редактор Учредитель: ООО «МЦНИП» Гл.редактор: Скопин О.В.

Лицензия на образовательную деятельность

Лицензия на осуществление образовательной деятельности №1686 от 01.11.2019.

Если рассматривать катушку Тесло с исторической точки зрения, становится не ясно, почему ученый не развил идею до конца. Ведь это готовый способ передачи энергии на расстоянии без проводов, что существенно уменьшает потери на монтаж сетей, расходники, столбы и изоляцию.

При этом можно было бы забыть о перерывах с электроснабжением, энергию легко и просто получилось бы доставить в любую точку планеты. Как показывает историческая реальность, ученого интересовало совсем другое применение собственного изобретения. Ученый пытался доказать существование эфира, некой субстанции, которая пронизывает все мироздание.

Согласно теории Тесло эта среда упруга, что делает возможным распространение электромагнитных волн. Одной из утопичных идей ученого была выработка энергии из эфира напрямую. Тесла предлагал установить две катушки на полюсах, что в теории должно было создать огромное магнитное поле по всей Земле.

Так электричество могло бы попасть в любую точку планеты. Катушку ученый придумать успел, а вот создавать приемники для них не стал, занимаясь разработкой получения энергии из эфира.

Катушка Тесла представляет собой высокочастотный резонансный трансформатор без ферромагнитного сердечника, с помощью которого можно получить высокое напряжение на вторичной обмотке. Под действием высокого напряжения в воздухе происходит электрический пробой, подобно разряду молнии. Устройство изобретено Николой Теслой, и носит его имя.

На верхний конец трубы вторичной обмотки устанавливают полый проводящий тор, обычно выполненный из алюминиевой гофрированной трубы для отвода горячих газов. В основном диаметр трубы подбирают равным диаметру вторичной обмотки. Диаметр тора обычно составляет 0,5-0,9 от длины вторичной обмотки. Тор имеет электрическую емкость, которая определяется его геометрическими размерами, и выступает в роли конденсатора.

Разрядник является коммутирующим элементом в первичном колебательном контуре. При электрическом пробое разрядника под действием высокого напряжения, в нем образуется дуга, которая замыкает цепь первичного контура, и в нем возникают высокочастотные затухающие колебания, в течение которых напряжение на конденсаторе С1 постепенно уменьшается. После того как дуга гаснет, контурный конденсатор С1 вновь начинает заряжаться от источника питания, при следующем пробое разрядника начинается новый цикл колебаний.

В качестве источника питания для зарядки конденсаторов используется высоковольтный трансформатор Т1, или несколько последовательно или параллельно соединенных трансформаторов. В основном начинающие тесластроители используют трансформатор из микроволновой печи (MOT – Microwave Oven Transformer), выходное переменное напряжение которого составляет

Ниже на картинке представлены формулы для расчета параметров катушки Тесла:

Предлагаю ознакомиться с моим опытом постройки катушки Тесла своими руками.

История развития

Развитие дистанционной беспроводной передачи электроэнергии связано с достижениями радиотехники, поскольку оба процесса имеют одинаковую природу. Изобретения в обеих областях связаны с исследованием метода электромагнитной индукции и ее влияния на генерацию электрического тока.

Утром 1820 года Ампер открыл закон взаимодействия токов, который заключался в том, что если ток течет в одном направлении по двум близко расположенным проводникам, то они притягиваются друг к другу, а если в разных — отталкиваются.

М. Фарадей в 1831 году установил в процессе проведения экспериментов, что переменное магнитное поле (которое со временем меняет размер и направление), создаваемое протеканием электрического тока, индуцирует (индуцирует) токи в соседних проводниках. У тех есть беспроводная передача электроэнергии. Мы подробно рассмотрели закон Фарадея в предыдущей статье.

Итак, Дж. К. Максвелл через 33 года, в 1864 году, перевел экспериментальные данные Фарадея в математическую форму, те же уравнения Максвелла являются фундаментальными в электродинамике. Они описывают, как связаны электрический ток и электромагнитное поле.

Существование электромагнитных волн было подтверждено в 1888 г. Г. Герцем в ходе его экспериментов с искровым излучателем с переключателем на катушке Румкорфа. Таким образом создавались электромагнитные волны с частотой до половины гигагерца. Стоит отметить, что эти волны могли быть приняты несколькими приемниками, но они должны быть настроены в резонанс с передатчиком. Дальность действия завода была порядка 3 метров. Когда в передатчике возникла искра, такая же искра возникла в приемниках. Фактически, это первые эксперименты по беспроводной передаче электроэнергии.

Известный ученый Никола Тесла провел обширные исследования. Он изучал переменный ток высокого напряжения и частоты в 1891 году. В результате были сделаны следующие выводы:

Для каждой конкретной цели установка должна быть настроена на соответствующую частоту и напряжение. В этом случае высокая частота не является обязательным условием. Наилучшие результаты были получены при частоте 15-20 кГц и напряжении передатчика 20 кВ. Колебательный разряд конденсатора использовался для получения тока высокой частоты и напряжения. Таким образом, можно передавать как электричество, так и производить свет.

Во время своих выступлений и лекций ученый демонстрировал свечение ламп (электронных ламп) под действием высокочастотного электростатического поля. Фактически, основные выводы Теслы заключались в том, что даже в случае использования резонансных систем невозможно передать много энергии с помощью электромагнитной волны.

Параллельно подобными исследованиями до 1897 года занимались ряд ученых: Джагдиш Боче в Индии, Александр Попов в России и Гульельмо Маркони в Италии.

Каждый из них внес свой вклад в развитие беспроводной передачи энергии:

  1. Дж. Бош в 1894 году зажег порох, передавая электричество на расстояние без проводов. Он сделал это во время демонстрации в Калькутте.
  2. А. Попов 25 апреля (7 мая) 1895 г с помощью азбуки Морзе передал первое сообщение. В России сегодня, 7 мая, по-прежнему День радио.
  3. В 1896 г. Г. Маркони в Великобритании также передал радиосигнал (азбука Морзе) на расстояние 1,5 км, а затем и 3 км над равниной Солсбери.

Стоит отметить, что работы Теслы, недооцененные в свое время и утерянные на века, по параметрам и мощности превзошли работы его современников. В то же время, именно в 1896 году его устройства передавали сигнал на большие расстояния (48 км), но, к сожалению, это было небольшое количество электричества.

И в 1899 году Тесла пришел к выводу:

Несостоятельность индукционного метода кажется огромной по сравнению с методом возбуждения заряда земли и воздуха.

Этот вывод приведет к другим исследованиям: в 1900 году ему удалось запитать лампу от катушки, проведенной в полевых условиях, а в 1903 году была запущена башня Вандерклифф на Лонг-Айленде. Он состоял из трансформатора с заземленной вторичной обмоткой и сферического медного купола наверху. С его помощью оказалось, что зажгли 200 ламп по 50 ватт. При этом передатчик находился в 40 км от него. К сожалению, эти исследования были остановлены, финансирование приостановлено, а бесплатная беспроводная передача электроэнергии оказалась экономически невыгодной для деловых людей. Башня была разрушена в 1917 году.

Заключение

Качер Бровина – оригинальный вариант генератора электромагнитных колебаний. В своей работе я доказал, что в домашних условиях можно изготовить действующую модель качера, а также рассмотрел возможности еѐ практического применения. Хочу отметить, что моя работа в этом направлении не закончена. В перспективе я хочу сделать качер Бровина с аудиомодуляцией. Для этого нужно немного усложнить схему, добавив два резистора и транзистор. (рис. 9) Тем самым мы сможем по цепи питания качера проигрывать музыку. На практике это выглядит красиво и интересно.

Рис. 9

В результате проведѐнных в данной работе исследований, можно сделать вывод о том, что качер Бровина, является простым в изготовлении и настройке прибором. С помощью которого можно продемонстрировать множество красивых и эффектных экспериментов. Во время работы катушки мы наблюдали два типа разрядов.

Анализируя все выше сказанное можно говорить о том, что Качер Бровина может быть с успехом использован в альтернативной энергетике, например, в устройствах получения бесплатной электроэнергии с использованием постоянных магнитов.

В заключение необходимо подчеркнуть следующее: создание новых технологий на основе описанного физического явления может дать России весьма существенные преимущества по отношению к другим странам. Поскольку, проведя в ближайшее время все необходимые исследования этого физического явления и разработав широкую гамму новых устройств и изделий, функционирующих на его основе и предназначенных для широкого практического применения в различных областях и сферах человеческой деятельности, Россия может осуществить новый качественный скачок в своем дальнейшем технологическом развитии. Внедрение российских ноу-хау кардинально изменит всю инфраструктуру энергетики и социума в целом – когда неожиданно откроется и экспериментально подтвердится новый способ получения энергии.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Домашние системы
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: