Высокочастотные датчики: применение и особенности настройки

Мифы о СВЧ-печах

— Многие люди держатся утверждения, что железная тарелка может спровоцировать взрыв микроволновки большой мощности. На самом деле, в худшем случае, она вызовет повреждение магнетрона из-за искрения.

— Если долго держать включённой микроволновую печь на большой мощности, она своим мощным электромагнитным излучением может вывести из строя все электроприборы в радиусе нескольких метров. На самом деле, электромагнитное излучение вне рабочей камеры не больше, чем от задней стенки системного блока компьютера, правда вблизи она всё-таки может помешать приёму сигнала сотовым телефоном на близкой частоте. Некоторые модели печей могут создавать помехи Wi-Max, Wi-Fi и Bluetooth.

— Микроволновая печь может вызвать аллергию… на электромагнитные волны.

— Что впервые СВЧ-печь, под названием «Radiomissor», была якобы разработана немецкими учёными во время Второй мировой войны, она даже якобы применялась в действующей немецкой армии, для разогрева продуктов питания, но якобы оказалась небезопасной и от неё отказались (российские сайты при этом ссылаются на зарубежные, а зарубежные — на российские исследования, якобы проведённые в несуществующих российских городах Кинск и Раджастан).

— Микроволны радиоактивны или делают продукты радиоактивными. Это неверно: микроволны относятся к категории неионизирующих излучений. Они не оказывают никакого радиоактивного воздействия на вещества, биологические ткани и продукты питания.

— Микроволны изменяют молекулярную структуру продуктов питания или делают продукты канцерогенными. Это тоже неверно. Принцип действия микроволн иной, чем у рентгеновских лучей или у ионизирующих излучений, и сделать продукты канцерогенными они не могут. Напротив, поскольку приготовление пищи при помощи микроволн требует очень небольшого количества жиров, готовое блюдо содержит меньше перегоревшего жира с измененной при тепловой обработке молекулярной структурой. Поэтому приготовление пищи с помощью микроволн полезнее для здоровья и не представляет для человека никакой опасности.

— Микроволновые печи испускают опасное излучение. Это не соответствует действительности. Хотя непосредственное воздействие микроволн может вызвать тепловое поражение тканей, риск при пользовании исправной микроволновой печью полностью отсутствует. Конструкцией печи предусмотрены жесткие меры для предотвращения выхода излучения наружу: имеются продублированные устройства блокировки источника микроволн при открывании дверцы печи, а сама дверца исключает выход микроволн за пределы полости. Ни корпус, ни любая иная часть печи, ни помещенные в печь продукты питания не накапливают электромагнитное излучение микроволнового диапазона. Как только печь выключается, излучение микроволн прекращается.

Тем, кто опасается даже близко подходить к микроволновой печи, нужно знать, что микроволны очень быстро затухают в атмосфере. Для иллюстрации приведем такой пример: допустимая западными стандартами мощность СВЧ-излучения на расстоянии 5 см от новой, только что купленной печи составляет 5 милливатт на квадратный сантиметр. Уже на расстоянии полуметра от микроволновки излучение становится в 100 раз слабее.

Как следствие столь сильного затухания, вклад микроволн в общий фон окружающего нас электромагнитного излучения не выше, чем, скажем, от телевизора, перед которым мы готовы сидеть часами без всякого опасения, или мобильного телефона, который мы так часто держим у виска. Просто не стоит опираться локтем на работающую микроволновую печь или прислоняться лицом к дверце, пытаясь разглядеть, что происходит в полости. Достаточно отойти от печи на расстояние вытянутой руки, и можно чувствовать себя в полной безопасности.

Как определить поломку

Чтобы определить неисправность, обесточьте технику, вынув штекер кабеля питания из розетки. Начните с визуального осмотра внутреннего отдела СВЧ-печи. Как проверить магнетрон и понять, что является источником проблемы? Выход из строя этой комплектующей сопровождается появлением следов горения. Такой тип диагностики позволит узнать, возможно, сгорел предохранитель.

Впрочем, скрытые аппаратные неисправности выявить без специального оборудования невозможно. Запомните, что сначала необходимо отсоединить комплектующую, а уже потом проводить тест на её работоспособность. Обязательно придерживайтесь простой пошаговой инструкции:

  1. Подсоедините щупы мультиметра к клеммам детали. Бесконечное значение на экране тестера свидетельствует о поломке комплектующей.
  2. Проверьте целостность печатной платы, ведь в неё интегрировано множество важных элементов: диоды, варистор и резисторы. Все детали выпаивать не придётся, просто протестируйте плату.
  3. Прозвоните предохранитель при комнатной температуре. В таких условиях он должен дать соответствующий сигнал.
  4. Проверьте высоковольтный конденсатор на предмет возможного пробоя. В рабочем состоянии он выдаёт мультиметру бесконечное значение. Если деталь сломана, тогда на экране появится практически нулевое сопротивление.
  5. Тест высоковольтного диода. Главной преградой диагностике выступает последовательное соединение. Осмотр невозможен, а внутреннее сопротивление – слишком высокий показатель для измерения. Поэтому удостоверьтесь в отсутствии пробоя в данной части, используя мегомметр.

Используйте эту инструкцию, а также следите за появлением характерных симптомов, чтобы своевременно обнаружить поломку техники.

Установка на улице

Процесс установки на улице требует особой технологии, которая поможет избежать повреждений и исключит влияние погодных факторов на последующую работоспособность системы. Выполнять его следует по такой схеме:

  • убедиться в отсутствии попадания прямого солнечного света и осадков;
  • скорректировать зону покрытия так, чтобы в ней отсутствовали все виды растительности (трава, кусты, деревья), которые будут шевелиться при любом ветре;
  • проконтролировать зону освещения, в которую попадает прибор;
  • определить зону контроля прибора, чтобы не попадать на дополнительное пространство, которое может стать причиной ложного срабатывания;
  • очистить линзу после монтажа и затем регулярно её проверять, очищать от посторонних загрязнений, которые существенно снизят область работы устройства.

Гиротрон

Разработанный в 1960-х годах в Советском Союзе, гиротрон представляет собой мощное вакуумное устройство, используемое в основном для нагрева плазмы в экспериментах по ядерному синтезу, таких как международный экспериментальный термоядерный реактор ITER, который в настоящее время строится на юге Франции. Для этих экспериментальных реакторов может потребоваться температура до 150 миллионов °C.

Принцип работы гиротрона

В гиротроне используются пучки энергичных электронов, вращающихся в сильном магнитном поле внутри полости. Взаимодействие между вращающимися электронами и электромагнитным полем резонатора генерирует высокочастотные радиоволны, которые направляются в плазму. Высокочастотные волны ускоряют электроны в плазме, нагревая плазму.

Лампа, которая производит 1 МВт средней мощности достаточно большая. Термоядерные гиротроны обычно имеют высоту от 2 до 2,5 метров и весят около тонны, включая сверхпроводящий магнит мощностью 6 или 7 Тесла.

Применение гиротрона

В дополнение к нагреву термоядерной плазмы, гиротроны используются в обработке материалов и спектроскопии ядерного магнитного резонанса. Они также были исследованы для несмертельного воздействия на толпы в системе внутренних дел. Эта система проецирует относительно широкий луч миллиметровой волны, возможно, полтора метра в диаметре. Луч предназначен для нагрева поверхности кожи человека, создавая ощущение жжения, но не проникая в нижележащие ткани и не повреждая их.

Параметры настройки

Три рычажка, которые присутствуют на корпусе устройства, влияют на его качество функционирования, поэтому их настройке стоит уделить особое внимание. Каждый из регуляторов имеет несколько положений, которые следует выставлять, исходя условий работы прибора

Первым настраивают зону чувствительности, которая регулируется рычагом SENS

Он имеет 3 режима: «High», «OFF», «Low»
Первыйпараметр покрывает территорию 8–16 м, а третий 0–8 м, второе, центральное положение выключает прибор.
В качестве второго, важного показателя, стоит обратить внимание на время включения датчика. Оно находится под рычажком Time
Как только датчик сработал на возникшее в его радиусе действия движение, он находится во включенном режиме, когда возмутитель спокойствия исчез, он выключится

Период от окончания движения до отключения регулируется рычагом с показателями от 5 секунд до 15 минут.
Третьим регулятором настраивают время функционирования прибора, которое соответствует световому периоду в сутках, поэтому показатель называется «уровень освещенности». Рычажок варьирует значения в пределах от 2 до 2 тыс. люкс.

Причины поломки

Если при включении микроволновой печи не происходит нагрев помещенных внутрь продуктов, скорее всего причина кроется в поломке магнетрона. При этом свет в рабочей камере может гореть, поворотный стол — вращаться. Как правило, магнетрон выходит из строя по причине своего естественного износа или нарушений пользователем правил эксплуатации прибора.

Разгерметизация

Поскольку магнетрон представляет по сути электровакуумный диод, то при отсутствии вакуума он функционировать не будет. Вакуум необходим, чтобы электроны могли беспрепятственно отделяться от раскаленного катода. Разгерметизированный магнетрон ремонту не подлежит, его необходимо заменить.

Повреждение колпачка

Колпачок магнетрона формирует емкостную электрическую связь между вибратором и стенками волновода и защищает место холодной сварки, которым «закрыли» трубку для вакуумирования – штенгель. При повреждении колпачка, особенно, если он оплавился или в нем образовалась дыра, его необходимо заменить. Если колпачок не пробит, а на нем просто образовался нагар, его можно попытаться очистить мелкозернистой наждачной бумагой.

Для замены нужно подобрать колпачок или сделать его самостоятельно из электролитического конденсатора подходящего диаметра. Как правило, посадочные места у всех магнетронов одинаковые

Но, очень важно использовать колпачок нужной высоты – он не должен быть выше старого. Если не выдержать эти требования, может возникнуть дисбаланс всей системы и все равно придется менять полностью магнетрон

Тотальный износ

Если микроволновая печь имеет длительный срок эксплуатации, все ее элементы физически изнашиваются. При этом возможно нарушение контактов электропроводки прибора, нарушение работы элементов управления, электронного модуля и других узлов. Также со временем повреждается внутреннее покрытие камеры. Эксплуатировать такую микроволновую печь нельзя, поскольку это является опасным. При появлении первых признаков тотального износа прибора целесообразно рассмотреть вопрос покупки новой микроволновой печи.

Поврежден магнит

Анодный блок магнетрона находится между магнитами. Электромагниты или постоянные магниты создают магнитное поле, параллельное оси магнетрона. Создаваемое ими магнитное поле действует на электроны и отклоняет их на спиральную траекторию. В результате между анодом и катодом создается вращательное спиралевидное облако. При повреждении магнита ремонт магнетрона выполнить невозможно, требуется только полная замена. Единственным исключением является ситуация, когда лопнул верхний магнит. Его можно заменить на аналогичный. При этом не стоит доверять сомнительным рекомендациям в интернете о возможном восстановлении магнита путем склеивания.

Проблемы с переходным конденсатором

Переходные конденсаторы вместе с дросселями образуют СВЧ фильтр для защиты от проникновения СВЧ излучения из магнетрона. Целостность конденсатора можно проверить, измерив сопротивление между корпусом магнетрона и выводами. Конденсатор работоспособен, если его сопротивление от нуля за несколько секунд вырастет до бесконечности. Пробой конденсатора вызовет выход из строя магнетрона.

При наличие определенных навыков, можно попытаться заменить конденсатор. Для этого нужно снять крышку фильтра, откусить кусачками дроссельные контакты. Затем рассверлить отверстия вокруг конденсатора, используя сверло диаметром 3 мм. Достав фильтра из корпуса, отмотать по одному витку у каждого, увеличив при этом длину контакта. Потом нужно аккуратно зачистить ножом или наждачной бумагой контакты.

Вставив новый конденсатор в корпус фильтра, прикрутить его болтами. Затем соединить контакты, чтобы они не касались стенок коробки и закрыть крышку фильтра. При замене конденсаторов нельзя использовать обычный припой. В этом случае необходимо пользоваться тугоплавким припоем или использовать устройство для контактной сварки. Но, нужно понимать, что такие работы лучше доверить профессиональным мастерам. К тому же, оптимальным выходом, в этом случае будет все же полная замена магнетрона.

Обрыв нити

При обрыве нити накала магнетрона элемент ремонту не подлежит. В таких ситуациях требуется только полная замена магнетрона. Проверить нить накала можно, используя мультиметр. Для этого необходимо перевести тестер в режим сопротивления. Затем отсоединить одну клемму магнетрона от цепи питания и проверить состояние клемм. При повреждении нити накала мультиметр покажет сопротивление от двух до трех Ом. Если произошел обрыв нити, тестер покажет «бесконечность», поскольку никакой реакции на прикосновение не будет.

Принцип работы датчика движения основанного на ультразвуке


1. Ультразвуковые волны.
2. Пьезокерамический элемент.
3. Выходное напряжение.
4. Металлическая диафрагма.
5. Конус.
6. Корпус.
7. Провод.
8. Эластичный материал.
9. Выводы.
Диапазон ультразвуковых волн, используемых в детекторах типа «ЭХО — 5», имеет частоту колебаний находящуюся за пределами человеческой слышимости – более 20кГц.

При их столкновении с объектом их отражение рассеивается в пространстве под широким, до 1800,углом. Эффект Доплера наступает, когда частота отраженных и излучаемых волн на приемном устройстве не совпадает.

Преимущества ультразвука над СВЧ состоит в сравнительно медленном распространении звука, что дает возможность использовать более дешевые и менее совершенные измерительные элементы в устройствах детекции.

Для генерации ультразвуковых волн используют пьезоэлектрические устройства, работающие в моторном режиме, напрямую преобразовывающие электрическую энергию в механическую.

Поскольку пьезомеханический эффект имеет обратную связь, то данная принципиальная схема может работать и на генерацию сигнала и на его прием. При использовании керамических элементов резонансная частота сигнала составляет 32 кГц.

Если детектор используется для работы в импульсном режиме, то для передачи и приема волн используют одно и то же устройство. Если режим работы непрерывен, используют два пьезокерамических элемента.

Одним из существенных недостатков этого принципа является то, что некоторые животные могут воспринимать передаваемые сигналы. Другой недостаток, это чувствительность к воздушному загрязнению, в запыленных цехах или при высокой влажности скорость срабатывания детектора несколько снижается.

Лампа бегущей волны с кольцевым стержнем

Применяется сейчас и электронный прибор СВЧ — огромная лампа бегущей волны с кольцевым стержнем.

Эта мощная лампа имеет длину более 3 метров от катода до коллектора, что делает ее самой большой  в мире. На базе ВВС Кавальер в Северной Дакоте имеется 128 таких кольцевых ламп, обеспечивающих радиочастотную частоту для чрезвычайно мощного радара с фазированной антенной решеткой. Этот 440-мегагерцовый радар ищет баллистические ракеты, запущенные в сторону Северной Америки. Он также отслеживает космические запуски и орбитальные объекты в рамках Сети космического наблюдения. Построенный в 1972 году радар отслеживает более половины всех объектов, вращающихся вокруг Земли, и, как говорят, способен идентифицировать объект размером с баскетбольный мяч на расстоянии 3200 км.

Еще более высокочастотная версия лампы бегущей волны с кольцевым стержнем используется в радаре с фазированной антенной решеткой на американском удаленном острове Шемья, примерно в 1900 км от побережья Аляски. Радар отслеживает запуски неамериканских баллистических ракет. Он также собирает данные наблюдения за космическими запусками и спутниками на низкой околоземной орбите.

Принцип работы лампы бегущей волны с кольцевым стержнем

Схема, используемая в этом приборе, известна как кольцевой стержень, который состоит из круглых колец, соединенных чередующимися полосами или стержнями, повторяющимися по его длине. Эта установка обеспечивает более высокую напряженность поля поперек электронного пучка, чем обычная ЛБВ, в котором радиочастотные волны распространяются по спиралевидному проводу. Более высокая интенсивность поля кольцевой трубки приводит к более высокому коэффициенту усиления и хорошей эффективности.

Процесс монтажа

Процесс монтажа СВЧ датчика не занимает много времени, но чтобы в последующем прибор работал правильно, необходимо учитывать ряд параметров. Любое нарушение последовательности или технологии подключения приведет к потерянному времени при пересмотре схемы наладки, а в худшем случае, к поломке прибора. Для начала стоит подобрать лучшее место для установки, которое будет полностью покрывать волнами интересующую территорию и достигать сигнала пульта управления. Процесс подключения происходит по следующей методике:

  • Выбирается место монтажа. Установщики размещают устройство в недоступном солнечным лучам месте, стараются оценить защищённость корпуса от внешних воздействий. Для моделей, которые располагаются на полотке, чаще всего выделяют место ровно в его середине. Устройства, которые крепятся на стену, закрепляют в верхней её части, как можно ближе к углу. Стеновые устройства, обычно, оборудованы поворотными механизмами, что позволяет направить их в нужную сторону.
  • Корпус закрепляется, после чего подключаются провода, которые обычно монтируются по схеме, нанесенной производителем на корпус. Там можно найти обозначение нуля — N и фазы — L. Специальными указателями на упаковке выделено направление подключения к клемме или от неё. Два провода считаются входящими, другие два выходящими. Первая пара необходимо, чтобы связать пульт или контроллер с датчиком, а вторая подключается непосредственно к прибору, который он контролирует (светильник, видеокамера, звуковая сирена и так далее).
  • Программирование. Самый важный этап настройки, после того, как провода успешно подключились, и прибор заработал — его настройка. В первую очередь потребуется выставить временной интервал срабатывания. Его устанавливают с помощью регулятора Time. Во вторую очередь выставляется зона покрытия прибором, его чувствительность. Она изменяется рычагом с названием SENS. Чем больше показатель, тем длиннее будут распространяться волны устройства. Кроме времени и чувствительности, большинство производителей оснастили прибор рычагом LUX. Он помогает выставить уровень освещенности дня, что позволяет настраивать устройство на работу в определённый интервал времени в сутках.

Условия покупки

Справиться с установкой датчика может каждый, но правильно его смонтировать, зафиксировать и настроить способен только специалист, поэтому не стоит экспериментировать с устройствами микроволнового типа, если нет опыта работы с ними. Насколько долго прослужит устройство, как качественно оно будет работать, напрямую связано с навыками мастера. Любая ошибка при подключении и наладке может грозить ложными сигналами и неправильной работой всей системы. Исключить человеческий фактор при отсутствии опыта невозможно, но выбрать прибор правильно помогут следующие показатели:

защитные параметры. Корпус устройства должен быть оснащён защитой, которая соответствует его условиям эксплуатации, для промышленных крупных объектов и улицы можно использовать марку не меньше, чем IP56. В бытовом использовании, для частных владений подойдет IP34;
особенности окружающего пространства. При покупке стоит учитывать радиус действия прибора и условия помещения, где оно будет находиться;
цель установки. Видеонаблюдение, включение света или другие параметры могут влиять на параметры датчика, его чувствительность и охват территории;
дизайн и установка

Миниатюрное неприметное устройство может быть скрыто от посторонних глаз, в то время, как прибор определённой расцветки, формы наоборот привлечёт к себе внимание. Дизайн устройства может гармонировать с отделкой помещения, вписываться в него, не привлекая внимания, даже на открытом пространстве.

Устройство и принцип работы

Устройство ИК датчика:

Принцип работы датчика движения:

Принцип работы и само устройство ДД достаточно просты:

В прибор установлен датчик, замечающий излучение тепла людей, после чего, срабатывает система, например, осветительных устройств.
На подконтрольной территории ДД, при возникновении движения, которое спровоцировал человек, осуществляется замыкание силовой цепочки.
Осуществление контрольных функций без перерыва, в установленном месте, за инфракрасным излучением – главный принцип срабатывания ДД.
В месте наблюдения, тепловое поле изменяется, при появлении достаточного по весу, объекта в движении.
В контролируемой зоне, ДД может подать сигнал, если телодвижения человека не существенные, например, он просто размахивает рукой

Это возникает из-за чередования зон общего инфракрасного поля в шахматной последовательности.
Для срабатывания датчиков важно, чтобы объект двигался.
С помощью ДД можно производить управление электронными аппаратами – освещением, работой кондиционеров, мероприятий охраны.. Во всех ДД возможно поменять настройки:

Во всех ДД возможно поменять настройки:

  1. Промежуток времени отключения. Можно задавать любое время с момента обнаружения движения.
  2. Предел освещенности. Это нужно для того, чтобы контролировать работу аппарата в разный период суток.
  3. Порог чувствительности. Чем больше чувствительность, тем быстрее прибор среагирует.

Клистрон

Клистрон помог вступить в эру большой науки в области физики высоких энергий. Клистроны преобразуют кинетическую энергию электронного пучка в радиочастотную энергию. Устройство имеет гораздо большую выходную мощность, чем лампа бегущей волны или магнетрон. Американцы основавшими одну из первых высокотехнологичных компаний в Силиконовой долине братья Рассел и Сигурд Вариан изобрели клистрон в 1930-х годах и вместе с другими основали высокотехнологичную компанию Varian Associates для его продвижения. В наши дни применение клистрона выполняется в сфере связи и энергетики.

Принцип работы клистрона

Внутри клистрона электроны, испускаемые катодом, ускоряются к аноду, образуя электронный пучок. Магнитное поле удерживает пучок от расширения, когда он проходит через отверстие в аноде к коллектору пучка. Между анодом и коллектором расположены полые структуры, называемые полостными резонаторами. Высокочастотный сигнал подается на резонатор, ближайший к катоду, создавая электромагнитное поле внутри резонатора. Это поле модулирует электронный пучок, когда он проходит через резонатор, заставляя скорость электронов изменяться, и электроны собираются в группы, когда они движутся к другим резонаторам полости ниже по потоку. Большая часть электронов замедляется, когда они проходят через конечный резонатор. В результате получается выходной сигнал, который намного превышает входной сигнал.

Применение клистрона

В 1960-х годах инженеры разработали клистрон, который должен был служить источником радиочастотного излучения для нового 3,2-километрового линейного ускорителя частиц, строящегося в Стэнфордском университете. Работая на частоте 2,856 гигагерц и используя электронный пучок напряжением 250 киловольт, клистрон вырабатывал пиковую мощность 24 МВт. С помощью клистрона достигалась энергия частиц до 50 миллиардов электрон-вольт.

Клистроны проложили путь к широкому использованию вакуумных ламп в качестве источников радиочастотного излучения для передовой физики элементарных частиц и рентгеновских источников света. Версия клистронов мощностью 65 МВт все еще находится в производстве. Клистроны также используются для досмотра грузов, стерилизации пищевых продуктов и радиационной онкологии.

Сферы применения магнетронов

Помимо обычных микроволновых печей магнетроны применяются в различных областях промышленности, а также при производстве радиолокационных систем. В зависимости от сферы применения магнетроны имеют определенные особенности:

  • Для работы в радарных установках устройство прикрепляется к антенне конической формы с параболическим отражателем. Управление осуществляется с помощью коротких импульсов высокой интенсивности. Излучаемая микроволновая энергия улавливается чувствительным приемником. Отображение обработанного сигнала происходит на электронно-лучевой трубке.
  • Для функционирования радиолокационных станций применяются коаксиальные магнетроны, характеризующиеся быстрым изменением частот. Их целесообразно использовать для расширения тактико-технических качеств локаторов.
  • В магнетронах, установленных в бытовых микроволновых печах, имеется прозрачное отверстие, которое выходит в рабочую камеру прибора. Использование пустой печи может способствовать поломке прибора, так как микроволны будут не отражаться, а поглощаться волноводом.

В промышленности магнетроны применяются для обеззараживания, сушки зерновых культур. СВЧ-технологии используются при пастеризации и стерилизации молока и других жидких продуктов. Они эффективны для поддержания технологического режима при сушке лекарственных трав или древесины. В химической промышленности магнетроны применяются при получении различных кислот и разложении нитратов

Внутренний мир

Корпус легко разбирается медиатором. Сама плата сидит в корпусе плотно, не болтается. Выглядит гораздо симпатичнее, чем прошлый образчик. Хотя вокруг 4 точкек крепления 8 угольной платы фотодатчика можно видеть полупрозрачную субстанцию. Думаю, флюс, хотя вдруг повреждённую пайкой лаковую плёнку восстанавливали? На коричневом плёночном конденсаторе удалось прочитать маркировку CBB22 / 564J400V На одном из электролитов Jwco 220 мкФ 16V, второй, к сожалению, не подлезть. Спрятанная под платформой микросхема BISS0001 / YDAWL4Q. Обильно гуглится. Рядом установлен 78L05 в SOT-89 корпусе.

Классификация датчиков движения для включения света

Перед приобретением прибора обнаружения перемещения следует разобраться и понять, какие функции он будет выполнять. Потому существует обширное множество разнообразных типов и видов сенсорного оборудование.

Самым первым и самым главным различием детекторов движения является, какой волновой спектр он использует:

  • Инфракрасный. Такие модели устройств, предназначенные для обнаружения движения, регистрируют излучения тепла объектом. Недостаток – это ложное срабатывания на перемещения животных и потоков горячего воздуха, например, от кондиционера. Инфракрасный волновой спектр абсолютно безопасен для здоровья человека.
  • Ультразвуковой. Детектор присутствия работает в пределе 20-60 кГц. Прибор генерирует звуковую волну, которая отражается от объекта, регистрируется и анализируется устройством. Недостатками таких моделей является возможность несрабатывания детектора из-за того, что объект слишком медленно движется, применение малого радиуса действия, а также не исключена возможность отпугивания ультразвуком домашних животных.
  • Микроволновый. Принцип работы такого детектора заключается в использовании электромагнитной волны высокой частоты, в 1 ГГц. Прибор выпускается значительно небольших габаритных размеров, что позволяет его скрытно установить. Радиус и дальность работы таких устройств зависит от величины мощности СВЧ-передатчика и чувствительности приемного модуля детектора. Условия окружающей среды и наличие небольших преград и перегородок особого влияния на работу детектора движения не оказывают. Но такие микроволновые устройства имеют достаточно высокую стоимость.
  • Комбинированный. Детекторы совмещают в себе инфракрасный и ультразвуковой волновые спектры.

Второе разделение детекторов присутствия заключается в том, где устройство будет установлено:

  • Снаружи здания. Радиус работы такого оборудования находится в промежутке от 100 до 500 м. В основном их монтируют на больших площадях промышленных предприятий или просто во дворе частного, загородного дома.
  • Внутри здания. Установка производится в любой комнате, помещении дома, квартиры и других. Применение такого регистратора осуществляется с использованием малого радиуса действия, величина которого зависит от площади помещения.

Третье разделение устройств обнаружения движения происходит по способам установки и монтажу оборудования:

  • Настенный или угловой. Из названия понятно, что такой датчик крепится на стене или в углу стен и потолка. Такой прибор снабжен небольшим углом обзора, что также позволяет избежать ложных срабатываний сенсора.
  • Потолочный. Крепится на потолок, использует угол обнаружения 360 градусов. Очень удобно применять такие регистраторы присутствия для включения световых приборов в помещениях, где несколько дверей.

И четвертое разделение сенсорного оборудования – по способу питания детектора электрической энергией:

  • Проводной. Является очень надежным источником электропитания, что позволяет обеспечить бесперебойную и безотказную эксплуатацию регистратора перемещения. Минусом такого способа электроснабжения является то, что необходимо протягивать метры провода и искать свободную розетку.
  • Автономный. Датчик движения питается от одного или нескольких аккумуляторов, которые, в основном, вставляются в корпус устройства. На рынке присутствуют также модели оборудования обнаружения перемещения, которые питаются от солнечных батареек. Недостатком таких моделей служит постоянный контроль за потребляемым током, который может менять свои величины и значения во времени.

И это только основные группы разделения такого типа оборудования, так как оно очень разнообразно.

Устройство микроволновой печи

Основные компоненты магнетронной микроволновой печи:

— металлическая, с металлизированной дверцей, камера (в которой концентрируется сверхвысокочастотное (СВЧ) излучение), куда помещаются разогреваемые продукты;
— трансформатор — источник высоковольтного питания магнетрона;
— цепи управления и коммутации;
— непосредственно СВЧ-излучатель — магнетрон;
— волновод для передачи излучения от магнетрона к камере;

Вспомогательные элементы:

— вращающийся столик — необходим для равномерного разогрева продукта со всех сторон;
— схемы и цепи, обеспечивающие управление (таймер) и безопасность (блокировки режимов) устройства;
— вентилятор, охлаждающий магнетрон и проветривающий камеру.

Достоинства прибора

СВЧ датчик движения в устройстве освещения и безопасности применяется достаточно часто. Выбор в пользу подобной системы происходит из-за следующих качеств:

  • реакция на токопроводящие объекты осуществляется даже при минимальном контакте, через стены, заграждения, предметы мебели или стекла;
  • независимо от изменения температуры, влажности и других параметров помещения, прибор будет срабатывать при заданной программе, на его качество работы не действует изменения в окружающей среде;
  • система срабатывает, даже если скорость объекта слегка отличается от нуля, за счет чего осуществляется высокая точность работы;
  • прибор имеет минимальные размеры, что даёт возможность крепить его в помещениях любого масштаба;
  • может закрепляться в одной зоне, но обслуживать несколько, не имеющих зависимость между собой. Единственный датчик может стать эффективным сразу для 3 или 4 помещений при правильном расчете зоны его работы и соответствующей настройке.

Количество и качество достоинств устройства позволяет говорить о его востребованности на рынке. Многие производители стремятся сократить количество недостатков, путем комбинирования СВЧ приборов с аналогичными системами за счет чего получается достигнуть идеального результата.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Домашние системы
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: