Что такое обрыв нуля в трехфазной сети

Чем опасно явление

Перенапряжение в электросети выглядит следующим образом:

Изоляция электрических кабелей и проводов, а также любых электроприборов способна выдержать только определенный уровень напряжения, указанный в эксплуатационных документах на них. Ниже приведена таблица, в которой приведены ориентировочные величины электрической прочности изоляции электропроводок и электрического оборудования.

Однако, в домашнем электрохозяйстве главное не это (изоляцию не заменить), а нарушения изоляции, вызванные механическими причинами (в том числе в результате крепления электропроводок со сдавливанием и скручиванием), климатическими (сырость, попадание воды) и сугубо хозяйственными (накопление пыли, грязи, насекомых и пр.). Так вот на все эти нарушения накладываются ещё и перенапряжения.

Всё это приводит, как показывают печальные случаи, к выходу из строя электрической проводки и электроприборов, к трагическим пожарам. Если в доме нарушена ещё и электрозащита (неисправна или загрублена при частых срабатываниях), то вероятность возгораний в результате перегрузки электропроводки или короткого замыкания резко возрастает. Если поврежденный электроприбор можно просто отключить от розетки и заменить исправным, то электропроводку быстро не заменить. На фото изображено повреждение изоляции в розетке, которое часто возникает из-за неплотного контакта и перегрева, или в результате грозового явления, которое может привести к перегрузке электропроводки и короткому замыканию.

Таким образом, перенапряжения в домашней электросети особенно опасны для старых электропроводок, которые не подвергаются профилактическому осмотру (вместе с розетками) и не обновляются, где небрежно обращаются с розетками, допуская их перегрев. Особо опасными в этом плане следует считать старые электропроводки в домах, часто подвергающихся грозовым явлениям и нашествию насекомых (деревенские и поселковые).

Откуда в розетке 380в при обрыве нуля — наглядно, доступно, без формул.

Наверняка у каждого из вас, хотя бы раз в жизни сгорали бытовые приборы от перенапряжения. При этом многие слышали, что подобное не редко случается из-за обрыва ноля.

Давайте наглядно без формул, векторных диаграмм, смещений нулевых точек и т.п., с точки зрения обывателя попытаемся разобраться, каким же образом напряжение 380в, вместо привычных 220в, может оказаться в ваших розетках.

Ведь действительно возникает логичный вопрос, как это так, оборвался или отгорел один из проводов, а напряжение ни то что не пропадает, а становится даже больше.

Понимание этого процесса будет полезно каждому потребителю, дабы потом не возникало вопросов, зачем электрики пытаются «всунуть» в электрощиток, непонятные реле, стоимостью несколько тысяч рублей.

Чтобы доступно разобраться в сути этого явления, давайте вспомним разницу между последовательной и параллельной схемой подключения электроприемников.

При параллельном подключении, фазный и нулевой проводники одновременно приходят ко всем потребителям в цепи. Нарисуем такую схемку, где этими потребителями будут обыкновенные лампочки накаливания.

На входе напряжение составляет 220в. При таком подключении, на каждой лампочке напряжение будет одинаковым, и при достаточном сечении проводников и малой нагрузке, не будет сильно отличаться от вводного.

При этом отключение или включение каждой лампочки по очередности, не сильно скажется на его значениях. Именно по такой схеме и подключены все розетки в ваших квартирах.

Однако если напряжение будет одинаковым, ток в цепи будет разным. Общее его значение складывается из суммы токов проходящих через лампочку №1 и №2.

Вы можете включать и более мощные приборы (лампы 200Вт, чайник), и все будет прекрасно работать.

Схема последовательного подключения несет в себе уже существенные изменения. Здесь питающий проводник (это может быть фаза или ноль), сначала приходит на первую лампочку, а далее от нее уходит на следующую.

Только после этого он возвращается на вводной автомат или в общую сеть.

Не важно количество токоприемников, их может быть 2,3,4 и более. Главное, чтобы они были строго подключены один после другого

Что же изменится, если вы включите последовательно две лампы по 100Вт? А случится то, что напряжение на них упадет примерно в два раза.

При этом общее вводное напряжение будет складываться из суммы падений напряжений на лампе №1 и лампе №2. То есть, 110в на одной и 110в на другой. Кстати, такой казалось бы недостаток, можно очень хитро использовать несколькими способами.

Напомню, что в параллельной схеме, U везде было одинаковым, не важно в какой точке. Здесь же одинаковым будет ток, при том в любой части электрической цепи I=I1=I2

Однако такая ситуация с равномерным падением напряжения, будет наблюдаться только в том случае, если все эл.приемники будут одинаковой мощности. Стоит вместо одной 100Вт лампы вкрутить 200 ваттную, и вы сразу же увидите разницу.

На лампочке 100Вт будет напряжение 146В и она будет гореть довольно ярко. В то же время более мощная 200 ваттная будет еле светиться.

Связано это с тем, что падение напряжения напрямую зависит от сопротивления потребителя. На более мощных приборах сопротивление маленькое.

Вот примерные данные по стандартным лампочкам, предназначенным для работы в сети 220В:

{SOURCE}

Зачем нужно зануление

Человечество активно использует электричество, фаза и ноль – важнейшие понятия, которые нужно знать и различать. Как мы уже выяснили, по фазе электричество подается к потребителю, ноль отводит ток в обратном направлении. Следует различать нулевой рабочий (N) и нулевой защитный (PE) проводники. Первый необходим для выравнивания фазового напряжения, второй используется для защитного зануления.

В зависимости от типа линии электропередач может использоваться изолированный, глухозаземленный и эффективно-заземленный ноль. Большинство ЛЭП, питающих жилой сектор, имеет глухозаземленную нейтраль. При симметричной нагрузке на фазных проводниках рабочий ноль не имеет напряжения. Если нагрузка неравномерна, ток небаланса протекает по нулю, и схема электропитания получает возможность саморегулирования фаз.

Электросети с изолированной нейтралью не имеют нулевого рабочего проводника. В них используется нулевой заземляющий провод. В электросистемах TN рабочий и защитный нулевой проводники объединены на всем протяжении цепи и имеют маркировку PEN. Объединение рабочего и защитного нуля возможны только до распределительного устройства. От него к конечному потребителю пускается уже два нуля – PE и N. Объединение нулевых проводников запрещается по технике безопасности, так как в случае короткого замыкания фаза замкнется на нейтраль, и все электроприборы окажутся под фазным напряжением.

Последствия обрыва нуля в трехфазных и однофазных сетях

К домовому электрощиту многоквартирного дома подходит 3- х фазное напряжение 380 В. К подъездному щиту также подводится три фазы, для отдельной сети квартиры используется одна фаза и нейтраль. Такая система электропитания TN-C применялась для старых построек и существует до сих пор.

Двухпроводная сеть частного дома с защитным заземлением

В новых домах используется система питания TN-C-S с третьим, дополнительным защитным проводником. В многоквартирном доме все фазы распределены по квартирам равномерно таким образом, чтобы нагрузки на все три фазы были одинаковыми и перекос фаз был бы минимальным.

Однако при обрыве нулевого провода происходит перераспределение напряжения по фазам и возникает перекос фаз. В результате в одной квартире возможно напряжение поднимется до 380 В, а в другой будет занижена до 170 В. В обоих случаях бытовые электроприборы и техника выходят из строя.

Особенно чувствительны к таким перекосам фаз бытовые приборы, имеющие электродвигатели — это стиральные машины, холодильники, кондиционеры, вентиляторы, пылесосы и т. д. Величина напряжения при перекосе фаз зависит от числа подключенных потребителей электроэнергии на всех фазах и их мощности.

Что происходит при обрыве нуля? Напряжение с другой фазы, через подключенные приборы других квартир, поступает на общий нулевой провод и в квартирах в розетках появляется напряжение не 220 В (фаза – ноль, как должно быть), а напряжение 380 В (фаза — фаза).

В результате, подключенные бытовые приборы выходят из строя из-за перекоса напряжения сети. Хуже еще если в электропроводке старых построек с системой электропитания TN-C в качестве защитного проводника используется нулевой провод, который присоединяется к корпусу бытовых приборов.

Система энергоснабжения TN-C-S с дополнительным проводником заземления PE применяемая в новых постройках

Тогда при прикосновении к корпусу, человек получит опасный удар током. В новых домах система заземления TN-C-S с проводником защитного заземления, на корпусах бытовых приборов опасного напряжения не будет, опасности поражения током нет.

Если обрыв нуля в однофазной сети произошел у вас в квартире, то опасности для бытовых приборов не будет, а вот при касании корпуса прибора вас поразит током (старая электропроводка TN-C) если использовать рабочий ноль в качестве защитного заземления.

Если в дом подведена трехфазная сеть, то при обрыве нулевого провода в трехфазной сети возникнет опасность выхода из строя бытовых приборов, не зависимо где произошел обрыв в магистральной линии или у вас в доме.

К чему приводит отгорание нуля в трехфазной сети

Что изменится, если произойдёт обрыв нулевого провода N ДО места соединения нулевых проводов в одной точке? Будет обрыв нуля в трехфазной сети:

Обрыв нуля в трехфазной сети

Если смотреть по схеме, правее места обрыва напряжение теперь будет не нулевым, а “гулять” в произвольных пределах.

Что будет, если ноль отсоединить (случайно или намеренно)? Какие напряжения будут подаваться потребителям вместо 220В? Это как повезёт.

Картинка в другом виде, возможно, так будет легче понять:

Перекос фаз в результате обрыва нуля.

Потребители условно показаны в виде сопротивлений R1, R2, R3. Напряжения, указанные в предыдущем рисунке, как ~220B, обозначены как ~0…380B. Объясняю, почему.

Итак, что будет, если ноль пропадёт (крест в нижнем правом углу)? В идеальном случае, когда электрическое сопротивление всех потребителей одинаково, ничего вообще не изменится. То есть, перекоса фаз не будет. Так происходит в случае включения трехфазных потребителей, например, электродвигателей или мощных калориферов.

Но в реале так никогда не бывает. В одной квартире никого нет, и включен только телевизор в дежурном режиме и зарядка телефона. А соседи по площадке устроили стирку, включили сплит-систему и электрический чайник. И вот -БАХ!- отгорает ноль.

Начинается перекос фаз. А насколько он зверский, зависит от реальной ситуации.

У соседей, которые дома, чайник перестанет греть, стиралка и сплит потухнут, напряжение уменьшится до 50…100В. Поскольку “сопротивление” этих соседей гораздо ниже, чем тех у тех, которых нет дома. И вот, эти люди спокойно работают на работе, а в это время в пустой квартире у них дымятся телевизор и китайская зарядка. Потому, что напряжение в розетках подскочило до 300…350В.

Это реальные факты и цифры, такое иногда бывает, состояние электрических щитков на лестничных площадках часто бывает аварийным. Даже, когда в доме проводится капитальный ремонт, щитки не трогают, поскольку менять электрику гораздо сложнее, чем покрасить дом и вставить новые окна.

Расследовать такое возгорание надо не с вызова экстрасенсов (мало ли, полтергейст со спичками играется;) ), а с вызова электрика.

Теперь – про

Защита от обгорания или обрыва нуля

Итак, обрыв и отгорание нейтрального проводника является очень опасным и довольно частым происшествием. Есть ли необходимость в защите электросети от этого негативного явления? Конечно же, есть! Защита от отгорания «нуля» в трехфазной сети позволит вам сохранить свою дорогостоящую бытовую технику в рабочем состоянии. Защита от обрыва «нуля» в однофазной сети обеспечит вашу личную безопасность. Все эти виды обеспечения безопасности человека и бытовых электроприборов от последствий, возникающих при обрыве нейтрального проводника, выполняются с использованием специального оборудования и приемов электромонтажа, которые мы рассмотрим ниже.

  1. Реле максимального и минимального напряжения. Это основное устройство, которое следует использовать для защиты электросетей от обгорания или обрыва нулевого проводника. Применяется на всех типах недвижности. Промышленность изготавливает модели реле напряжения как для однофазных, так и трехфазных сетей. Принцип действия устройства заключается в разрыве цени электроснабжения при отклонении величины напряжения в сети сверх установленных значений.
  2. УЗИП — ограничитель перенапряжения. Это устройство для защиты и отключения оборудования при перенапряжении в электропроводке, возникающего вследствие обрыва или отгорания «нуля», удара молнии и по некоторым другим причинам. В основном используется в частных домовладениях. Принцип работы устройства заключен в увеличении собственного внутреннего сопротивления электротоку при больших перепадах напряжения.
  3. Устройство защитного отключения (УЗО). Такой модуль, имеющий сокращенное название УЗО, способен создать эффективную защиту для человека от удара электрическим током при обрыве нейтрального проводника в однофазных линиях. УЗО мгновенно обесточит сеть при попадании фазы на нулевой провод в том случае, если заземление бытовых приборов выполнено с нарушением ПУЭ (правил устройства электроустановок).
  4. Дифференциальный автомат с расширенными функциями. Дифавтомат — это защитное модульное устройство, позволяющее одновременно отключать фазу и нейтральный провод при возникновении любых аварийных ситуаций. Этот модуль совмещает в своей конструкции автоматический выключатель при КЗ (коротком замыкании) в нагрузке и защитное устройство (УЗО). При обгорании «нуля» в магистральных сетях с тремя фазами и обрыве нулевого провода в однофазных линиях он способен защитить электрические приборы и другую технику от выхода из строя, а человека от удара электротоком.
  5. Многократное повторное заземление. Этот технологический прием способен защитить бытовые приборы и человека от последствий обрыва и обгорания «нуля», но он сложен в исполнении, решает ограниченный спектр задач и применяют его в основном специалисты энергоснабжающих организаций на магистральных линиях электропередач.

Разводка проводов

Опытные электрики применяют небольшую хитрость, когда нужно подключить несколько автоматов и не ошибиться с вводной фазой. Для этого надо взять один проводник и зачистить на нём не только его окончание, но и сделать промежуточные зачищенные места таким образом, чтобы каждое из них могло заходить к контакту автомата.

В идеале, если автоматы стоят на DIN-рейке рядом, то можно отмерить эти расстояния просто приложив проводник так, чтобы переходная его часть от одного автомата к другому образовывала петлю. Она позволит проводу выходить из корпуса вертикально.

Зачищенное место должно иметь длину, вдвое большую, чем на конце провода, потому что нам придётся делать из него небольшую петельку, которой предстоит подключать автомат. На эту петельку надо будет надеть термоусадочную трубку или крепко обмотать изолентой то место, где заканчивается изоляция. Это даст нашему проводу жёсткость.

Затем петлю надо вставить в контактное отверстие автомата и крепко затянуть. Зачищенных мест должно быть по числу автоматических выключателей. Зато мы будем уверены, что фаза разведена правильно – одна и та же на квартиру.

Основные причины возникновения скачков напряжения в сети

Скачки напряжения могут отличаться по величине отклонения от нормы, по своей продолжительности и динамике возрастания/убывания в зависимости от причин их возникновения:

  • Большая нагрузка на сеть. Одновременное подключение большого числа электроприборов при недостаточной мощности сети приводит к нестабильности напряжения. Это может быть заметно, например, как мерцание лампочек или внезапное выключение электроприборов. Данное явление встречается часто, особенно по вечерам;
  • Мощный потребитель по соседству. Случается, если рядом находятся промышленные объекты, торговые центры, офисные здания с мощной вентиляционной системой и так далее.
  • Обрыв нулевого провода. Нулевой провод выравнивает напряжение у потребителей электроэнергии. При его обрыве (сгорании, окислении) часть потребителей получат повышенное напряжение (а другие заниженное), что с высокой вероятностью приведет к выходу из строя незащищенной электротехники.
  • Ошибки при подключении. Например, если были перепутаны нулевой и фазный провода;
  • Плохая проводка. Сбои возникают из-за изношенности проводки, использования некачественных материалов и неправильно выполненных монтажных работ.
  • Удар молнии. Попадание молнии в линии электропередачи может вызывать стремительный скачек напряжения в тысячи вольт. Представляет особую опасность, так как средства защиты не всегда успевают сработать.

Последовательное подключение электроприборов

При последовательном соединении устройств фаза подключается к первому электроприбору, от него идёт ко второму, дальше к следующему и только последний аппарат соединяется с нейтралью.

В этой схеме ток во всех электроприборах одинаковый, а напряжение согласно закону Ома обратно пропорционально сопротивлению и мощности аппаратов.

Для примера можно привести вопрос, который преподаватели физики любят задавать ученикам. Если включить последовательно две лампы накаливания — на 100Вт и 25Вт, какая будет светить ярче?

Большинство школьников отвечают, что более мощная, но на самом деле она обладает меньшим сопротивлением, из-за чего на ней будет меньшее напряжение и ярче горит менее мощный светильник.

Классификация электрооборудования по рабочему напряжению

Практическими экспериментами выявлено, что через установленную молниезащиту при ее пробое в электрическую схему здания вероятность проникновения импульсов разрядов более 6 киловольт составляет около 10%. Этот показатель взят за основу расчета и проектирования электроприборов, создания защит от высоковольтного перенапряжения, как наиболее вероятного.

Устройства защиты от импульсного перенапряжения бытовой электрической сети создаются для работы с этими группами напряжений.

Категория электроприборов №1

Изготавливаются с изоляцией, обеспечивающей защиту от импульсов напряжения, не превышающих 1,5 кВ. Устанавливаются внутри электрических приборов, работающих со сложной электронной схемой или полупроводниковыми элементами.

Категория электроприборов №2

Изоляция защищает от импульсов до 2,5 кВ. Применяется для бытовых электрических приборов, электрифицированного инструмента домашнего мастера: дрелей, перфораторов и подобных устройствах.

Категория электроприборов №3

Создаются с защитой изоляции от импульсов до 4 кВ. Она устанавливается на розетках и выключателях, электродвигателях, электрических плитах, электропроводке, внутри распределительных щитов.

Категория электроприборов №4

Изоляция выдерживает проникновение импульсов до 6 кВ. Ею снабжаются автоматические выключатели, разрядники, счетчики электроэнергии.

Поскольку электрические приборы ГРЩ своей изоляцией способны сами выдерживать импульсы напряжения до 6 кВ, то их защиту с помощью УЗИП не выполняют. А вот все остальные бытовые потребители нуждаются в защите — снижении возникающих перенапряжений до 1,5 кВ, как минимум. Эту задачу УЗИП и обеспечивает.

Причины отсутствия фазы

Сразу стоит сказать, что фаза пропадает по одной единственной причине — нет контакта

При этом неважно — оборван кабель или разомкнут разъединитель на трансформаторной подстанции. При этом все сказано и для трёхфазной и для однофазной сети

Также не все знают, что однофазная сеть 220В является одной из фаз трёхфазной сети с линейным напряжением 380В, а между фазой и нулем в этом случае получается 220В. Давайте рассмотрим, что делать если пропала фаза на примере разных ситуаций.

Не работает освещение

Если нет света, но работают розетки, первым делом проверьте наличие напряжения в патроне на люстре. При этом проверить наличие фазы можно индикаторной отверткой, но будьте внимательны — велика вероятность сделать КЗ. О том, как пользоваться индикаторной отверткой, мы рассказали в отдельной статье.

Если там ничего нет, возможно проблема в подключении проводов к патрону, если и с этим всё в порядке — тогда, скорее всего, пропала фаза в выключателе или распределительной коробке.

Такое часто происходит, когда контакты выключателя вроде бы замыкаются, но соединения между ними нет, а также если провода были плохо зажаты в клеммнике выключателя. Для проверки выключателя нужно снять его со стены и прозвонить, замыкаются ли контакты при замыкании выключателя, заодно проверить приходит ли на него напряжение.

Если напряжения на выключателе нет — проблема в распределительной коробке или в проводке между ней и выключателем. Если пропадает фаза при включении света — у вас короткое замыкание в патроне, светильнике, либо на линии от выключателя до светильника.

Не работает розетка

В розетках также может пропасть фаза. Это легко проверить, если снять нерабочую розетку и осмотреть качество соединений с проводами. Если соединения хорошие, то нужно знать, как запитаны розетки. Всего различают две схемы соединений:

  • Шлейфом.
  • Звездой.

Шлейф — это когда каждая следующая розетка подсоединяется к предыдущей параллельно, а звезда — когда от каждой розетки идет отдельная линия к электрощиту или распределительной коробке.

Тогда в первом случае нужно проверить состояние клеммников и контактов в предыдущей по цепи рабочей розетке, а во втором случае — осмотреть распределительную коробку.

В одной комнате

Если нет фазы в одной из комнат – обратите внимание на электрощит. Если каждая комната включается отдельным автоматом – возможно выбило автомат на эту комнату, либо же он вышел из строя

В первом случае – искать проблемы в проводке комнаты, а во втором – заменить автомат.


Если все комнаты запитаны от одного автоматического выключателя, значит проблема в распределительной коробке, от которой запитана эта комната.

Нет света в многоквартирном доме

Если вы обнаружили, что проблемы с подачей электричества не только у вас, но и у всех соседей по стояку — значит произошел, обрыв одной из трёх фаз либо во вводном электрощите дома, либо в каком-то из подъездных щитов. Такое происходит при отгорании нуля и перекосе фаз, когда из-за перенапряжений нагрузка и её токи неравномерно распределяются между потребителями. В результате контакты какого-то из соединений не выдерживают и отгорают.

В этом случае нельзя самому устранять неисправность, нужно обратиться в управляющую компанию или снабжающую организацию, чтобы они прислали дежурную бригаду электриков.

Реже бывают случаи, когда пропадает две фазы. В этом случае, как и в предыдущих нужно проверить состояние клемм автоматических выключателей на вашем квартирном щите и, если в нем все контакты и клеммы автоматов внешне исправны — вызвать бригаду электриков.

Самостоятельное устранение неисправностей в подъездных электрощитах опасно тем, что вы не можете в полной мере привести отключение всех линий и вывесить запрещающие плакаты.

В частном доме

Если вы обнаружили что пропало напряжение в сети, посмотрите на вводной автомат, если он выбит – включите его. Если после включения автомата напряжение не появилось – проблема во вводе в дом. Также возможна потеря контактов на автомате. А если при включении автомата его сразу же выбивает – однозначно есть короткое замыкание либо в проводке, либо в каком-то из подключенных приборов.

Критерии выбора стабилизатора на 3 фазы

Для защиты от аномалий входных параметров тока электрооборудования бытового и промышленного назначения стабилизатор напряжения рекомендуется выбирать в соответствии со следующими критериями:

Количество фаз питания. Трёхфазные стабилизаторы напряжения для дома, офиса или производственных предприятий выбираются в том случае, если от электросети объекта питается хотя бы один потребитель с 3-фазной схемой питания. В ситуациях, когда суммарная потребляемая мощность подключаемой однофазной техники превышает 7 кВт, сеть целесообразно переоборудовать на 3-фазы с подключением к каждой из них отдельного однофазного стабилизатора с соответствующим фазовой нагрузке значением мощности.

Мощность.

Точность и инерционность стабилизации. Приводятся в инструкции по эксплуатации или паспорте электроприбора. К примеру, бытовое оборудование и оргтехника нуждаются в стабилизации сетевого напряжения с погрешностью до 5%, тогда как лабораторная, вычислительная, телевизионная и т.д. техника не терпит погрешностей стабилизации выше 1%. Инерционность стабилизатора – время реакции на изменения входных параметров сетевого тока – выбирается в соответствии с характеристиками потребителей.

Диапазон напряжения на входе. Заявленная производителем точность стабилизации касается рабочего диапазона входного напряжения. При выходе последнего за установленные (предельные) рамки стабилизатор отключает потребителей от питания, либо отключается сам.

Перегрузочная способность. Характеризуется временем, на протяжении которого стабилизатор способен выдавать мощность, превышающую номинальную на 5% и выше. По истечению заданного периода перегрузки или при коротком замыкании система защиты отключает устройство с целью предотвращения его выхода из строя. Трёхфазный промышленный стабилизатор напряжения должен иметь высокую устойчивость к перегрузкам, поскольку к электросетям производственного назначения часто подключаются потребители со значительными скачками параметров тока при запуске (электродвигатели, насосы и т.п.).

Наличие интеллектуальных опций контроля и управления, в том числе удалённого, работой системы. Нормализаторы напряжения могут оснащаться дополнительными опциями, повышающими удобство контроля и управления параметрами сетевого тока, к примеру, фильтрами импульсных помех, ручной регулировкой выходного напряжения, байпасом, дистанционным управлением и т.д.

Схема и особенности подключения

В зависимости от особенностей потребителей электроэнергии, нуждающихся в защите от аномалий входного тока, трёхфазный стабилизатор напряжения может подключаться по одной из следующих схем:

  1. Сразу после электросчётчика или распределительного щитка;
  2. Непосредственно перед потребителем, нуждающимся в стабилизации напряжения.

Стабилизатор с 3-фазным питанием имеет 4 входных и 4 выходных клеммы. Одна из них предназначена для подключения нуля или нейтрали, остальные – для подключения фазных линий. Эта схема соблюдается независимо от того, где подключен нормализатор – после счётчика или сразу перед защищаемым оборудованием.

Чтобы выбрать трёхфазный стабилизатор напряжения, следует внимательно изучить свойства сети электропитания, а также характеристик подключаемого к ней оборудования. Грамотный подбор устройства стабилизации позволяет обеспечить стабильную и непрерывную работу потребителей и способствует увеличению срока их службы.

Обрыв нуля в трехфазной сети

Обрыв нуля в трехфазной сети может произойти, как от перегрузки, так и от короткого замыкания, или же от того, что в местах соединения плохой контакт. Переходное сопротивление в каком-либо месте этого нулевого провода слишком большое или часть нулевого провода выполнена проводом меньшего сечения. Тогда в этом месте может образоваться разрыв (проводник отгорит).

В электролинии, которая расположена после обрыва, получается перекос фаз. Напряжение, которое поступает в каждую из квартир, будет зависеть от общей суммарной мощности всех электроприборов, подключенных к сети в этих квартирах. В одну часть квартир многоквартирного дома поступает повышенное напряжение, в другие квартиры – пониженное.

Для бытовой техники (любой) очень опасно повышенное напряжение. В квартирах, которые подключены с разных фаз, включение некоторых приборов при обрыве нуля будет не параллельно (на напряжение 220 В), а последовательно (на напряжение 380 В) .

Согласно закону Ома, напряжение (380 В) распределится так, что на маломощных устройствах с большим сопротивлением (компьютеры, телевизоры, DVD-плейеры) напряжение будет повышенное, а на мощных устройствах с небольшим сопротивлением (электрочайник, утюг, пылесос) – пониженное. В итоге: телевизор сгорит, а чайник не закипит.

При пониженном напряжении из строя выходит в основном техника, которая имеет электродвигатели (холодильники, вентиляторы, вытяжки, кондиционеры, стиральные машины и другие). Пусковые токи электродвигателя при понижении напряжения возрастают: мощность та же, напряжение упало, ток вырос. Электродвигатель сгорит, так как его обмотка не выдерживает увеличенный пусковой ток.

Для того чтобы защитить приборы от перепада напряжений (защита от обрыва нуля), необходимо применение специальных устройств – реле минимального и максимального напряжения. Они контролируют величину напряжения в квартире и их можно устанавливать и в квартире, и в квартирный щиток на лестничной клетке. Выходное напряжение они не стабилизируют, но, отключив напряжение, спасут бытовую технику. При недопустимых отклонениях напряжения реле срабатывает и отключает квартиру от электросети.

По начальному состоянию контактов

Замкнутое, разомкнутое, переключающимися контактами

По типу управляющего сигнала


Рис.1 Реле напряжения “Зубр”, “ZUBR”

Установка реле напряжения — защита от обрыва нуля. Что такое реле напряжения. Это — устройство защиты приборов, от перепадов напряжения, и предназначено (служит, используются) для автоматического отключения напряжения, при его изменении в аварийный предел, в результате обрыва нуля или других непредвиденных аварийных моментах. И автоматического включения, через заданный промежуток времени, после нормализации напряжения. Реле напряжения позволяет защитить электроприборы подключенные к электросети от опасных для них перепадов напряжения. При всех недопустимых изменениях напряжения (снижении или повышении, как резком так и постепенном), реле напряжения. отключит электроприборы от сети до тех пор, пока напряжение в сети не вернется в допустимые пределы.

Пару случаев из жизни:

1. Электрики ремонтировали ввод в подъезд. И во время ремонта на несколько секунд был отключен рабочий ноль. Произошло очень неприятное. Вернувшись домой вечером, люди обнаружили, что у них погорели телевизоры, зарядки, и т.п. — то, что у нас постоянно включено в розетки. Хорошо, что ещё не произошел пожар.

2. Пришёл электромонтер по вызову, жалоба — плавает напряжение. Меряет напряжение (всё выключено) — почти 300 вольт. Затем при включении лампы накаливания напряжение падает до 70В… Оказалось, в этажном щитке выгорел болт, на который приходит ноль. Произошел обрыв нуля, перекос фаз, напряжения пошли вразнос. Заменил болт, восстановил контакт, напряжение нормализовалось.

Как видно, такие проблемы происходят из-за неправильных действий «электриков» либо из-за самопроизвольного обрыва (отгорания) нулевого провода в старом жилом фонде.

В этой статье рассказывается подробно, почему такое бывает и как с этим бороться.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Домашние системы
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: